Discrete Optimization Problems

 Aninteger programming (IP) problem is formulated as:

max z = ¢/ x, subjecttoAx < b, x€Z", x>0
X

A binary integer programming (BIP) problem is formulated as:

max z = ¢’ x, subjectto Ax < b, x € {0,1}"
X

e A Mixed integer programming (MIP) problem is formulated as:
max z = ¢’ x, subjectto Ax < b, x; >0,x; €EZ,i=1,..,ng;
xl-;S Xi <xip,l=ng+1,...,n

A general mixed variable design optimization problem is formulated as:

min f (x),

Subjectto h;(x) =0, i=1,..,I; gj(x) <0,j=1i..m
Xi (S Di,i = 1,...,7’ld; XiL < Xi < inri = Ng + 1,...,7’l



Enumeration Method

e Discrete optimization problems may be solved by enumeration, i.e.,
through an ordered listing of all solutions.

e The number of solution combinations to be evaluated is given as:

N, = H?zdl qi;, Where n, is the number of design variables and g; is

the number of discrete values for the design variable x;.
* Note, N, increases rapidly with increase in n;z and g;.



LP Problems with Integral Coefficients

 Consider optimization problem modeled with integral coefficients:

min z = ¢’ x, Subjectto Ax = b, x > 0,
X

where 4 € Z™"  rank(4A) = m,b € Z™,c € Z"

e Assume that A is totally unimodular, i.e., every square submatrix C
of A, has det(C) € {0, +1}. In particular, every basis matrix B has
det(B) = +1; hence B™! = +Adj B; and xgz = B™1b are integral.

e Further, if 4 is totally unimodular, so is [A I]. Let a problem with LE

constraints be represented as: Ax + Is = b; then, if A € Z™ ™ is
totally unimodular and b € Z™, all BFSs to the problem are integral.

e Total unimodularity of A is a sufficient condition for integral solution
to the LP problem modeled with integral coefficients. A necessary
condition is that every m X m matrix B has det(B) = +1.



Example: Integer BFS

Consider the LP problem with integral coefficients

max z = 2x1 + 3x,
X

Subjectto:x; <3,x, < 5,x; +x, <7, x€Z* x>0
Following the introduction of slack variables, the constraint matrix
10100 3
01010|b=|5
1

and the right hand side are given as: A = 1
1001 7

Note, A is totally unimodular and b € Z3.

Then, using the simplex method, the optimal integral solution is
obtained as: xT = [2,5,1,0,0], with z* = 109.



Example: Transportation Problem

man 12:] 1Cijxij, 1=12;j=123
Xij

Where

Subject to: };i* 1Xij = 4, ?=1xij
X11 X12 X13 10
X21 X292 X23 10
5 9 6

 For example, possible BFS are:

= b,

Consider a transportation problem with m = 2 supply andn = 3
demand nodes

Every BFS to the problem has m +n — 1 = 4 nonzero components

10

10

0 4 6 | 10 1 9 0 | 10
5 5 0 | 10 4 0 6 | 10
5 9 6 5 9 6




Binary Integer Programming Problems

Consider the BIP problem:

min z = ¢’'x, SubjecttoAx > b, x; € {0,1}, i =1,...,n
X

Most LP problems can be reformulated in the BIP framework. If the
number of variables is small, and the bounds x,,,;, < X; < X4, ON
the design variables are known, then each x; can be represented as
a binary number using k bits, where 28*1 > x ... — x,.;.. The
resulting problem involves selection of bits and in a BIP problem.



Implicit Enumeration

BIP problems can be solved via implicit enumeration. In this
process, obviously infeasible solutions are eliminated and the
remaining ones are evaluated (i.e., enumerated) to find the
optimum. The search starts fromx; =0, i = 1, ...,n, which is
optimal. If this is not feasible, then we systematically adjust
individual variable values till feasibility is attained.



Implicit Enumeration Algorithm

Implicit Enumeration Algorithm:
1. Initialize:setx; = 0, i = 1, ..., n; quit, if this solution is feasible.

2. Forsome i, set x; = 1. If the resulting solution is feasible, then
record it if it is the first feasible solution; also record it, if it
improves upon a previously recorded feasible solution.

3. Backtrack (set x; = 0) if a feasible solution was reached in the
previous step, or if feasibility appears impossible in this branch.

4. Choose another i and return to 2.

 The progress of the algorithm is recorded in a decision-tree using
nodes and arcs, with node O representing the initial solution
(x; =0, i =1,...,n),and node i representing a change in the value
of variable x;. From node k, if we choose to raise variable x; to one,
then we draw an arc from node k to node i.



Implicit Enumeration Algorithm

e At node i the following possibilities exist:

— The resulting solution is feasible, hence no further improvement in
this branch is possible.

— Feasibility is impossible from this branch.

— The resulting solution is not feasible, but feasibility or further
improvements are possible.

* In the first two cases, the branch is said to have been fathomed. If
that happens, we then backtrack to node k, where variable x; is
returned to zero. We next seek another variable to be raised to one.

 The algorithm continues till all branches have been fathomed, and
returns an optimum 0-1 solution.



Example: Implicit Enumeration

 Problem: A machine shaft is to be cut at two locations to given
dimensions 1, 2, using one of the two available processes, A and B.
The following information on process cost and three-sigma
standard deviation is available. The problem requires that the
combined maximum allowable tolerance be limited to 12mils:

Process\Job Jobl Job?2

Cost SD Cost SD
Process A $65 +4mils $57 +5mils
Process B $42 +6mils $20 +10mils




Example: Implicit Enumeration

e Letx;,i =1,..,4 denote the available processes for both jobs; let
t; denote their tolerances. Then, the BIP problem is formulated as:

min z = 65x; + 57x, + 42x5 + 20x,
X

Subjectto: x; +x, = L, x5 +x, =1,%;t; < 12,x; € {0,1}
 The problem is solved using Implicit Enumeration algorithm
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Integer Programming Problems

e Consider the IP problem:

max z = ¢’ x, SubjecttoAx < b, x€Z", x>0
X

e The LP relaxation of the IP problem is defined as:

max z = ¢’ x, SubjecttoAx < b, x>0
X

 The LP relaxation solution serves as upper bound on the IP solution
 Two popular approaches to solve IP problems are:

— Branch and bound method

— Cutting plane method



Branch and Bound Method

e Start from the LP relaxation solution; successively introduce the
integrality constraints on the design variables

— Each integrality constraint on variable x; introduces two new
subprograms (branching) that can be solved via LP methods

— Each subprogram results in one of the following:
e There is no feasible solution.
e The solution does not improve upon available IP solution.

e Animproved IP solution is returned and is recorded as current
optimal.

e The progress of the algorithm is recorded in a decision-tree
e The algorithm ends when all branches have been fathomed



Example: Branch and Bound Method

Consider the following IP problem:
Max z = 60x; + 90x, + 120x3,
Subject to: 35x; + 60x, + 140x3 < 1000,15x; + 30x, + 60x3 = 2000,
X, +x,—2x3<0; x€Z3 x>0
e Sy:LPrelaxation (Fy), x{ = 0,x; = 7.69,x3; = 3.85, f* = 1153.8; record
as upper bound
e S;:Fy U{x; < 3}, integer solution: x;{ = 0,x; = 6,x3 =3, f* =900;
record as current optimum
* S,:FyU{x3 = 4}, non-integer solution: x; = 1.6,x; = 6.4,x3 =4, f* =
1152; further improvement possible
* S3:F, U{x, < 6}, non-integer solution: x; = 2.1,x;, = 6,x; = 4.05, f*
1151.4; further improvement possible



Example: Branch and Bound Method

Sui F3 U {x3 < 4}, integer solution: x] = 2,x;, = 6,x3 =4, f* = 1140;
record as the new optimum

Sc: F3 U {x3 = 5}, non-integer solution: x; = 8.57,x; = 0,x3 =5, f* =
1114.3, which does not improve upon the current optimum. The branch is
fathomed.

S¢: Fy U {x, = 7}, non-integer solution: x{ = 0.57,x; =7,x3 =4, f* =
1144.3, further improvement possible

S7: Fg U {x; < 0}, non-integer solution: x; = 0,x; = 7.33,x3 =4, f* =
1140, which does not improve upon the current optimum. The branch is
fathomed.

Sg: Fg U {x; = 1} has no feasible solution. The branch is fathomed.

All branches having been fathomed, the optimal solution is: x* =
(2,6,4), f* = 1140.



Example: Branch and Bound Method

The decision tree for the problem
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x* = (0,7.69,3.85), f* = 1153.8
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x* = (0,6,3),f* = 900
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Cutting Plane Method

Consider IP problem:

max z = ¢’ x, SubjecttoAx < b, x € Z", x > 0,
X

Assume that the optimal BFS for the LP relaxation is represented as:
IxB + ANxN — b

Next, use the floor operator to write the ith constraint as:
n

Xi + Z ([aijj + aij)xj = |_le + ,Bl'
j=m+1
The above constraint further resolves into:
n n
X + z [aiijj < lbiJ; z C(inj > ﬁi
j=m+1 j=m+1

Note that an integer feasible solution satisfies both inequalities; whereas,
the optimal non-integer solution does not satisfy the 2" inequality
(known as the Gomory cut)



Cutting Plane Method

e The introduction of the Gomory cut makes the current LP solution
infeasible without losing any IP solutions

 The cutting plane algorithm generates a family of polyhedra which
satisfy: 0 > Q; D Q, D :-- D QO NZ" where

O = {x € R™": Ax < b} denote the polyhedral associated with the
LP relaxation problem.

 The cutting plane algorithm terminates in finite steps.



Example: Cutting Plane Method

e Consider the simplified manufacturing problem given as:

max [ = 7.5x1 + 5x,
X1,X2

Subject to: 10x; + 5x, < 60,5x; + 12x, < 80;x(,x, €E Z
 Using Simplex method, the final tableau is given as:

Basic X1 X9 S1 So Rhs
X1 1 0 0.126  -0.053  3.368
Xy 0 1 -0.053  0.105 5.263
—Z 0 0 0.684  0.131 52.58

* The non-integer optimum solution is given as: x] = 3.368, x; =
5.263, f = 52.58.



Example: Cutting Plane Method

 The series of Gomory cuts that result in the optimum solution to
the IP problem are given as:

No Cut Optimal solution

1. 6x; + 12x, < 83 x; = 3.389,x, = 5.222,f* = 51.528
1. 10x; + 6x, < 65 x; = 3.357,x, = 5.238, f* = 51.369
1. 7x; + 10x, < 70 x; = 3.846,x, = 4.308, f* = 50.385
1. 7x1 + 9x, < 65 x; = 3.909,x, = 4.182, f* = 50.227
1. 7x1 + 8x, < 60 x1 =4,x5=4,f" =50




Example: Cutting Plane Method

e Consider following IP problem:
Max z = 60x; + 90x, + 120x5,

Subject to: 35x; + 60x, + 140x3 < 1000, 15x; + 30x, + 60x3 = 2000,
x1+x2—ZX3S0;xEZS, x=0

LP relaxation solution: x; = 0,x, = 7.69,x; = 3.85, f* = 1153.8

Final Simplex tableau is:

Basic x4 X3 X3 S1 S S3 Rhs
Xy 0.808 1 0 0.539 0.039 0 7.69
x3  -0.096 0 1 -0.231 0.019 0 3.85
S3 0.173 0 0 0.115 0.115 1 123.1
—Z 0.115 0 0 2.077 0.577 0 1153.8




Gomory Cuts for the Problem

 Consider the first constraint equation:
0.808x; + X, + 0.539s; + 0.039s, = 7.692

e The first cut is developed as: 0.808x; + 0.539s; + 0.039s, = 0.692

 The following series of cuts progressively squeezes the feasible
region and produces an integer solution: x* = (2,6,4), f* = 1140

No. Cut Optimal solution

1. | 0.808x; + 0.539s, + 0.039s, — 5, = 0.692 x; = 0.857,x; = 7,x; = 3.929, f* = 1152.9

1. | 0.833s; + 0.024s, + 0.881s, — s5 = 0.929 | x} = 2.162,x} = 5.946,x} = 4.054, f* = 1151.3

1. | 0.054s; + 0.973s, + 0.135ss — s; = 0.946 | x! = 2.083,x; = 5.972, x5 = 4.028, f* = 1145.8

1. | 0.056s; + 0.139s5 + 0.972s4 — s; = 0.972 Xi=2,x5=6x; =4 f =1140




